Requirement of histone deacetylase activity for signaling by STAT1.

نویسندگان

  • Lidija Klampfer
  • Jie Huang
  • Laurie-Anne Swaby
  • Leonard Augenlicht
چکیده

STAT1 is a transcription factor that plays a crucial role in signaling by interferons (IFNs). In this study we demonstrated that inhibitors of histone deacetylase (HDAC) activity, butyrate, trichostatin A, and suberoylanilide hydroxamic acid, prevented IFNgamma-induced JAK1 activation, STAT1 phosphorylation, its nuclear translocation, and STAT1-dependent gene activation. Furthermore, we showed that silencing of HDAC1, HDAC2, and HDAC3 through RNA interference markedly decreased IFNgamma-driven gene activation and that overexpression of HDAC1, HDAC2, and HDAC3 enhanced STAT1-dependent transcriptional activity. Our data therefore established the essential role of deacetylase activity in STAT1 signaling. Induction of IRF-1 by IFNgamma requires functional STAT1 signaling and was abrogated by butyrate, trichostatin A, suberoylanilide hydroxamic acid, and STAT1 small interfering RNA. In contrast, silencing of STAT1 did not interfere with IFNgamma-induced expression of STAT2 and caspase-7, and HDAC inhibitors did not preclude IFNgamma-induced expression of STAT1, STAT2, and caspase-7, suggesting that HDAC inhibitors impede the expression of IFNgamma target genes whose expression depends on STAT1 but do not interfere with STAT1-independent signaling by IFNgamma. Finally, we showed that inhibitors of deacetylase activity sensitized colon cancer cells to IFNgamma-induced apoptosis through cooperative negative regulation of Bcl-x expression, demonstrating that interruption of the balance between STAT1-dependent and STAT1-independent signaling significantly alters the biological activity of IFNgamma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REQUIREMENT OF HISTONE DEACETYLASE ACTIVITY FOR SIGNALING BY STAT1 Running title: HDAC and signaling by IFNγ

STAT1 is a transcription factor which plays a crucial role in signaling by IFNs. In this study we demonstrated that inhibitors of HDAC activity, butyrate, TSA and SAHA, prevented IFNγ-induced JAK1 activation, STAT1 phosphorylation, its nuclear translocation, and STAT1-dependent gene activation. Furthermore, we showed that silencing of HDAC1, HDAC2 and HDAC3 through RNA interference markedly dec...

متن کامل

A phosphorylation-acetylation switch regulates STAT1 signaling.

Cytokines such as interferons (IFNs) activate signal transducers and activators of transcription (STATs) via phosphorylation. Histone deacetylases (HDACs) and the histone acetyltransferase (HAT) CBP dynamically regulate STAT1 acetylation. Here we show that acetylation of STAT1 counteracts IFN-induced STAT1 phosphorylation, nuclear translocation, DNA binding, and target gene expression. Biochemi...

متن کامل

STAT1 signaling is not regulated by a phosphorylation-acetylation switch.

The treatment of cells with histone deacetylase inhibitors (HDACi) was reported to reveal the acetylation of STAT1 at lysine 410 and lysine 413 (O. H. Krämer et al., Genes Dev. 20:473-485, 2006). STAT1 acetylation was proposed to regulate apoptosis by facilitating binding to NF-κB and to control immune responses by suppressing STAT1 tyrosine phosphorylation, suggesting that STAT1 acetylation is...

متن کامل

Histone deacetylase activity is required to recruit RNA polymerase II to the promoters of selected interferon-stimulated early response genes.

Posttranslational modification of histones by acetylation, methylation or phosphorylation has emerged as a major mechanism to modify chromatin structure and gene expression. In most cases, transcriptionally active genes display enhanced binding of acetylated histones in their promoters. Activation of histone acetyltransferases or inhibition of histone deacetylases (HDACs) allows chromatin to as...

متن کامل

Acetylation of Stat1 modulates NF- B activity

Acetylation of signaling molecules can lead to apoptosis or differentiation of carcinoma cells. The molecular mechanisms underlying these processes and the biological role of enzymes mediating the transfer or removal of an acetyl-group are currently under intense investigation. Our study shows that Stat1 is an acetylated protein. Stat1 acetylation depends on the balance between Stat1-associated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 29  شماره 

صفحات  -

تاریخ انتشار 2004